If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+21x-9.3=0
a = 3; b = 21; c = -9.3;
Δ = b2-4ac
Δ = 212-4·3·(-9.3)
Δ = 552.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{552.6}}{2*3}=\frac{-21-\sqrt{552.6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{552.6}}{2*3}=\frac{-21+\sqrt{552.6}}{6} $
| 45=9(x+5) | | 9(k-4)-7k=-2(k+8) | | 1/12x+1/8x=1 | | -t+(-7)=4.7 | | 5x+6-4x=2-3 | | -23-7x=-6(-2+2x) | | 15=-3x+4-1 | | 9/3+2y=7y-1/5 | | 4=2(x+(x+2)-27 | | -6=4b-2b | | -12+7x=5x | | 4-2k+3=3 | | F(-x)=x^2 | | 8/9+1/8t=2 | | 5x+6+3x+20=180 | | -c*7=11 | | 7+16t-3=9t+82-6t | | p+3+3=12 | | 11/30x=13/15 | | -16=2n+5+5n | | 7x-27=8-1x-19 | | 7x+9/6=11-5x/2 | | 56=2(2w-8)+w | | 5(t+13)-2t=-1 | | -(t−31)=-33 | | -2=-3b+4b | | 2x3+-5x2+-19x+42=238 | | 5x+8+10-3x=90 | | -13=7n+6n | | -17c-4=-16-20 | | 57-5a=32 | | 8x-41+9x+17=90 |